Standards and Practices Over Head Electric Equipments

by

Y.P.Singh

Sr. Professor (Electrical Engg.)

ELECTRIFICATION SCENARIO AT A GLANCE

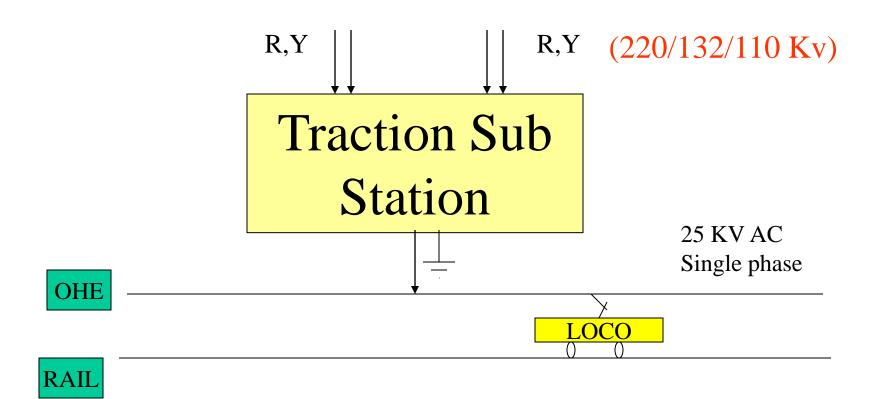
- 1st Electric Train started on 3rd February, 1925 on ex-Great Indian Peninsula Railway (GIP Railway), (now Central Railway) from Bombay VT(now CSTM) to Kurla via Harbor line, about 15.00 Km long.
- Now, as on 31-03-05, the electrified route is 17,280 Km which is about 27% of Indian Railways route of about 63,000 Km.

ELECTRIFICATION SCENARIO AT A GLANCE

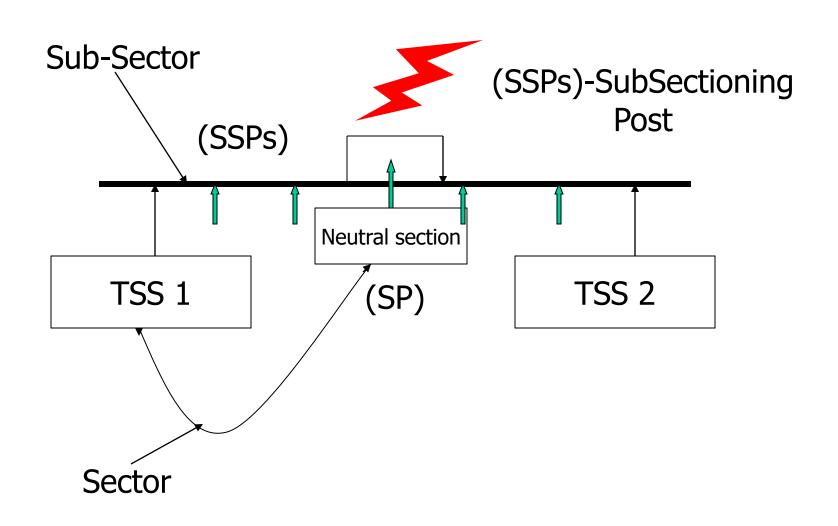
• Passenger Traffic carried out on Electrified route is about 50%.

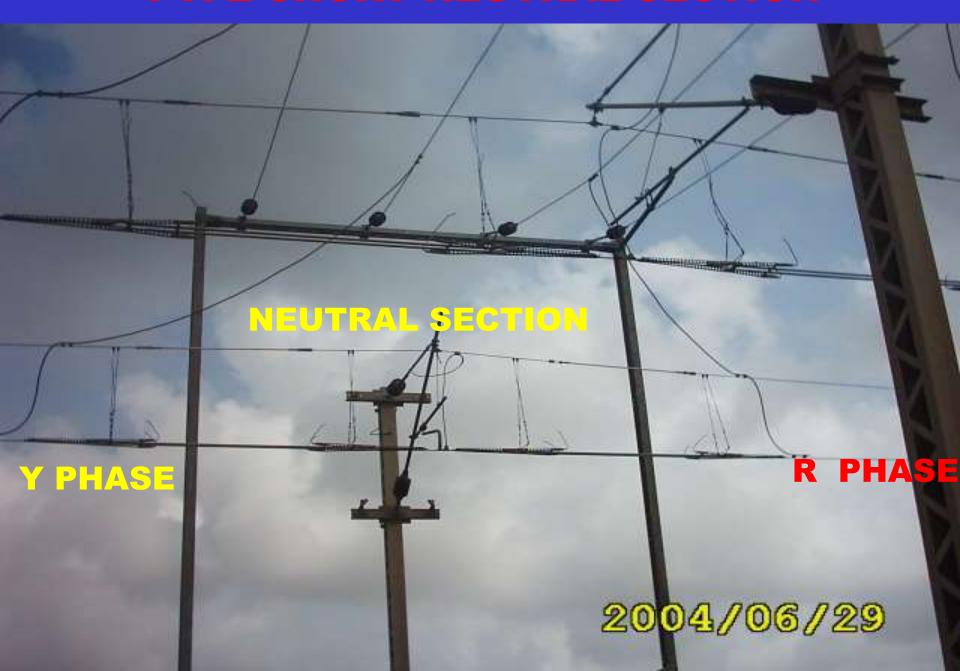
• Goods Traffic carried out on Electrified route is 67%.

TRACTION VOLTAGE SYSTEM


- Electric Traction introduced in Mumbai area on 1500 volt DC traction in 1925.
- 25 KV AC Traction introduced in 1960 which is now universally adopted in Indian Railways.
- 1500 volt DC 400 route Km.(which is also under conversion to 25 KV AC).
- 25 KV AC, single phase 50 Hz 16,880 route Km

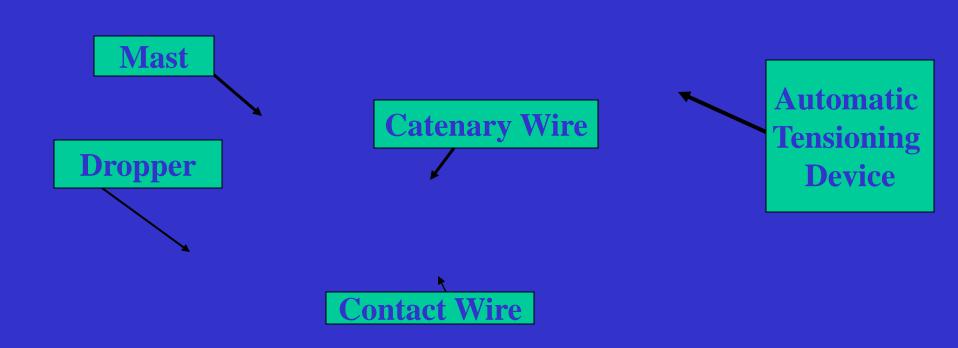
Traction Distribution (TRD)


- Power Supply Installation (PSI)
- Overhead Equipment (OHE)
- Remote Control equipment
 - RCC [Remote Control Center]
 - SCADA- [Supervisory Control and Data Acquisition system]


SCHEMATIC DIAGRAM OF TRACTION SUB STATION

SCHEMATIC DIAGRAM

PTFE SHORT NEUTRAL SECTION



Neutral Section

A short section of insulated dead overhead equipment which separates the sectors fed by two adjacent substations which are normally connected to different phases.

Warning Boards for Driver

OHE Arrangement

OVERHEAD EQUIPMENT

Site Photograph

- Masts and portals
- Cantilever Assembly
- Contact and Catenary Wire
- Dropper
- Auto tensioning device (ATD)

CANTILEVER ASSEMBLY

Sketch

Main parts

- Stay tube
- Bracket tube
- Steady arm
- Bracket Insulator
- Stay arm Insulator
- Register arm
- Suspension clamp

DROPPERS & BONDS

DROPPERS

 A fitting used in overhead equipment construction for supporting contact wire from catenary

BONDS

 An electrical connection across a joint in or between adjacent lengths of rail

(structure bond, continuity bond, cross bond etc.)

Auto Tensioning Device (ATD)

- Auto tensioning device
 - A device for maintaining the tension of OHE conductors constant under all ambient temperature conditions.
 - Such OHE is called regulated OHE.

CONTACT & CATENARY WIRE

• Contact wire –

- cross sectional area 107 sq.mm.
- diameter 12.24 mm
- normal tension 1000 kg
- breaking load 3905 kg

• Catenary wire –

- cross sectional area 65 sq.mm.
- diameter 10.50 mm
- Normal tension 1000 kg
- breaking load 3920 kg

Electrical Clearance

• The minimum distance in air between live equipment and the nearest earthed part.

Vertical

• \	1	1 1	, •	
1		long d	lurations	320 mm
/			0, _ 0, 0	<u> </u>

ii) short durations 270 mm

• Lateral

-1	10000	larentine	200	100 100
	10112 0	luration	320	
/		7 07 2 00 0 2 0 2 2		

ii) short duration 220 mm

Working Clearance

- Minimum clearance between live conductor/equipments and such earthed structure/live parts of different elementary sections where men are required to work shall be 2 m.
- Where the clearance is not obtained the structure shall be protected by earthed metallic screens or prescribed warning boards.

IMPLANTATION

- The horizontal distance from the nearest face of traction mast to the centre line of track
- The nominal IMPLANTATION of mast is 2.5 m.
- Can be lowered to 2.36 m (with the approval of EIG)

Height of the Contact Wire

- Minimum 4.80m (above rail level)
- maximum 5.80m
- On level crossing 5.50m. (Provision of Height Guage at LC Gates)

OHE Inspection Car (Tower Wagon)

- Used for maintenance of OHE and for attending to break downs.
- Carries necessary tools for maintenance and break downs such as tackles, straining screws, clamps, ropes, ladders, adequate stock of insulators, length of contact and catenary wires and other OHE fittings.
- Types of Tower wagon
 - Four Wheeler (speed potential upto 75 KMPH)
 - <u>Eight Wheeler</u> (speed potential upto 110 KMPH)

Environmental Effect on OHE

- Pollution causes large number of insulator flash over.
- Pollutants provide creepage path resulting into flash over of insulators and consequent creeping of circuit brakers.
- Types of pollution
 - Saline pollution caused by salt deposits in coastal areas.
 - Chemical and industrial pollution caused by waste from industries like hydrochloric acid, Sulphuric acid, particles of urea, cement etc.

Maintenance Schedules for OHE

- Foot Patrolling For visual inspection of every part of OHE.
- Trolley Inspection To observe closely the OHE during day time.
- Current Collection Tests To detect points at which contact between the contact wire and pentograph is unsatisfactory resulting in sparking. These tests are performed at night.
- Special Checks More frequent attentions on items such as Insulators, section insulators, Isolating switches, earth connections, Bird nest etc.

Maintenance Schedules for OHE – contd.

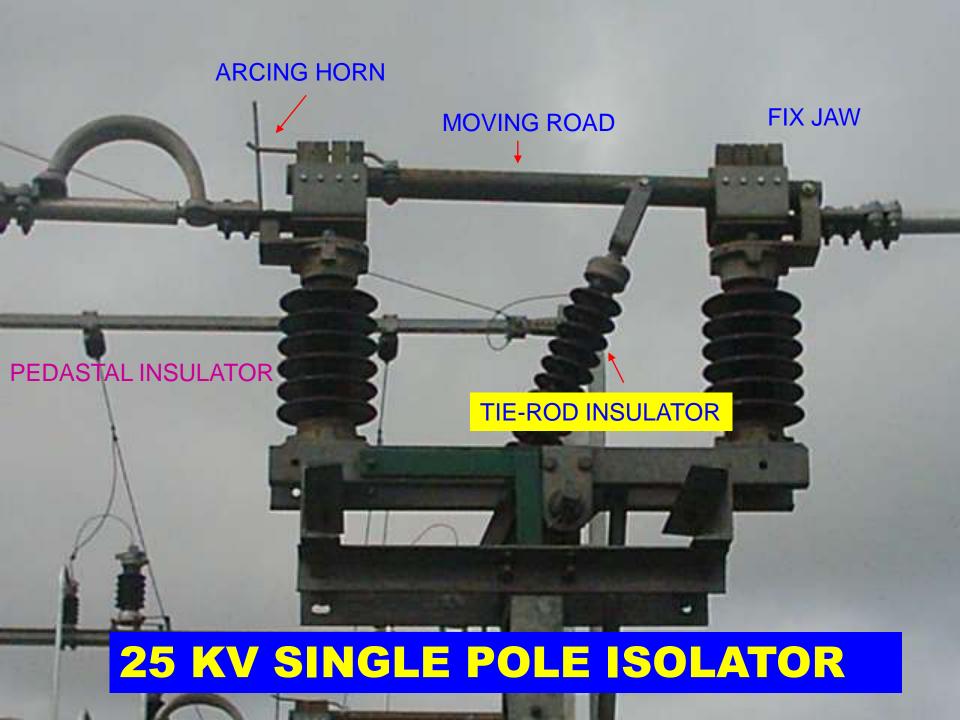
- Annual Maintenance and OHE Inspection Car Check – Replacement of defective fittings, checking and correction of clearances, heights, staggers, Checking of Masts, portels, contact wire and catenary wire, insulators, neutral sections, regulating equipments, clamps etc.
- Periodical Overhaul At the interval of four years.
- Re-tensioning of Unregulated OHE At every six months.

Power Supply Installations

• Traction Substation (TSS)

Switching Stations

132 KV DOUBLE POLE ISOLATOR



CURRENT TRANSFORMER

DC SECTION **BUS BAR** CT

Maintenance Schedules of Tractions sub-stations

• Fortnightly maintenance -

- Going around the whole area of sub stations,
- inspect for general cleanliness, proper drainage, road and rail axis.
- Checking of batteries.

• Monthly maintenance –

- Bonding and earthing
- Oil level in transformers, circuit breakers etc.
- Insulators
- Traction transformer
- Operating mechanism of circuit breakers and interrupters.

Maintenance Schedules of Tractions sub-stations-- Contd

Quarterly maintenance

- Inspection of batteries and battery charges.
- PTs and CTs.
- Auxillary transformers.

Half yearly maintenance

- Traction transformers Testing of oil sample for accidity and BDV.
- Control and Relay panel
- Traction transformers.

Maintenance Schedules of Tractions sub-stations-- Contd

Yearly maintenance

- Inspection of fence all around the sub station and bonding between metal fencing panels and to earth.
- Lighting arresters.
- Bonding and Earthing
- Traction transformers.
- Control and Relay panel
- Batteries and battery charges.

THANK YOU

ELECTRIC LOCOMOTIVES

Nomenclature

Electric Locos and EMUs are classified by means of a three letter code, followed by version number in numeric

First Letter-	Gauge

W Broad Gauge

Y Meter Gauge

Z Narrow Gauge

Nomenclature

Second Letter- Type of Traction (current)

C Continuous Current (DC)

A Alternating Current

CA Dual Current AC/DC

(D Diesel)

<u>Third Letter</u> – <u>Type of Service</u>

M Mixed Service P Passenger Service

G Goods Service S Shunting

U Multiple Units

Examples of Nomenclature

- WAP 4
 - BG, AC, Passenger service, Version 4
- <u>WCAM1</u>
 - BG, Dual Current, Mixed service, Version 1
- <u>YCS 1</u>
 - Meter Gauge, DC, Shunting service, Version 1
- <u>WCG 5</u>
 - BG, DC, Goods service, Version 5

Bogie Arrangements

- B --- Two axle bogie with one Traction Motor for both the axles.
- BO--- Two axle bogie with one Traction Motor for each axle.
- CO--- Three axle bogie with one Traction Motor for each axle.
- B-B Loco with two 'B' bogies
- CO-CO Loco with two 'CO' bogies

Types of Electric Locos

AC Locos

- **B-B** WAG1, WAG2, -WAG3, WAG4,
- **BO BO** WAM1, WAM2, WAM3,
- CO-CO WAM4, WCAM1, WAP1, WAG5, WAG6, WAG7, WAP3, WAP4, WAG9

DC Locos

• CO-CO WCM1, WCM2, WCM3, WCM4, WCM5, WCG2

Comparison Of Pass & Goods

Loco for Passenger

Loco for Goods

Less Tractive Effort

More speed

Lower gear ratio

More Tractive Effort

Less speed

Higher gear ratio

ELECTRIC LOCOMOTIVE LOCO TYPES

• WAG 5

• WAM 4

• WAG 7

• WAP 1

• WAG 9

• WAP 5

• WCAM1

3900 KVA

3900 KVA

5400 KVA

5400 KVA

6000 hp 3 phase

6000 hp 3 phase

5400 KVA AC/DC

CIRCUIT DIAGRAM OF LOCO

A TYPICAL CIRCUIT DIAGRAM OF CONVENTIONAL ELECTRIC LOCOMOTIVE IS SHOWN HEREWITH

Main Equipments of Electric Locomotive

Roof Equipments –

- Pantograph for current collection
- Circuit Breaker for making on/off electric supply from panto to power equipments

On Board power equipments

- Traction Transformer for stepping down voltage from 25 KV to 750/1500 volts.
- Rectifier for converting 750 AC to 750 volt DC for feeding supply to traction motors.
- Arno Converter for converting single phase 750 volt AC
 to 3 phase 415 volt for feeding supply to auxiliary machines
 like compressor/exhausters.

Main Equipments of Electric Locomotive

- Under slung Equipments
 - Traction motor for producing tractive effort required to move train.
 - Suspension arrangement system for transmitting tractive effort from traction motor to bogie.
 - Brake System for braking of electric loco and train
 - Batteries for feeding supplies to control system
 -baby compressor for initial raising of pantograph.

Specific Energy Consumption (SEC)

- SEC for Goods Train= 10 Kwh per 1000 GTKM
- SEC for Passenger Train= 19 Kwh per 1000 GTKM

MAINTENANCE COST OF LOCOS

• About Rs. 20 lacs per loco per year

THANK YOU