

WELCOME TO

LOCOMOTIVE DESIGN CENTRE RDSO

SOFTWARE USED

UNIGRAPHICS(NX)

TEAM CENTER

ANSYS

MSC Nastran

CAD

PDM

FEM

Fatigue Analysis

CAD- COPMUTER AIDED DESIGN
PDM- PRODUCT DATA MANAGEMENT

HIGH ADHESION BOGIE

LOCOMOTIVE UNDERFRAME

DETAIL OF UNDERFRAME

WMD3D PLATFORM

LOCO UNDERFRAME WITH SUB ASSEMBLIES

PIPING & ROUTING

HOOD OVER ENGINE ASSEMBLY

LOCOMOTIVE CAB

CONTROL CABINET

ELECTRICAL CABINET

LOCOMOTIVE SHORT HOOD

CONTROL STAND

DIGITAL LOCO DIESEL

PROJECT/LOCO DESIGN COMPLETED WDM3D END CAB

PROJECT/LOCO DESIGN Completed

BG Sri Lanka 2300 hp

MG Vietnam 1300hp

BG Bangladesh 2600hp

MG Malaysia 2300hp

SUDAN/MAYANMAR LOCO

SUDAN/MAYANMAR LOCO

COACH BOGIE DESIGN AND AIR SUSPENSION

TOPICS ON BOGIE DESIGN

- MODES OF COACH BODY OSCILLATION.
- DESIGN OF BOGIE COMPONENTS.
- DESIGN OF SUSPENSION ELEMENTS.
 - VEHICLE DYNAMICS SIMULATIONS.
- FIELD TRIALS.

- TOPICS ON AIR SUSPENSION

- NEED FOR AIR SUSPENSION.
- DETAILS OF AIR SUSPENSION.
- CONTROL EQUIPMENTS.
- DESIGN.
- ADVANTAGE.

DESIGN REQUIREMENT

- GAUGE
- SPEED
- AXLE LOAD
- MAX MOVING DIMENSION
- MIN CURVE NEGOTIATION
- ANY OTHER SPECIFIC REQUIREMENT.....

BOGIE DESIGN

- VEHICLE MOTION QUANTITIES.
- DEGREES OF FREEDOM.
- VIBRATION EXCITATION.
- SUSPENSION DESIGN.
- SAFETY AGAINST DERAILMENT.
- RIDING QUALITY.
- RESONANCE AND HUNTING
- VEHICLE DYNAMICS SIMULATIONS.
- OSCILLATION TRIALS.

Figure 7.1 Degrees of freedom

RESONANCE ACCLN.

FIRST:
$$\omega_2^2$$
. $z_0 \cdot \sqrt{\frac{1+4D^2}{4D^2}}$

SECOND:
$$\frac{\omega_1.\omega_2. \, \tau_0. \, \sqrt{(\omega_2/\omega_1)^2 + 4D_2^2} \cdot \sqrt{1+4D_1^2}}{(M_{m}') \cdot (\omega_2) \cdot 2D_2 + 2D_1}$$

$$D \approx \frac{P_c}{2(n_1.m + M) \cdot \omega_1}$$

$$P_c \approx c_1.n_1^2 + c_2.n_2^2$$

$$n_1 = \frac{d_1}{(d_1+d_2)}, \quad n_2 = \frac{d_2}{(d_1+d_2)}$$

$$d_2 = STATIC \; BOLSTER \; SPG. \; DEF.$$

$$d_1 = STATIC \; AXLE \; BOX \; SPG. \; DEF.$$

ACCIN. TRANSMISSIBILITY

VEHICLE DYNAMIC SIMULATIONS (MATHEMATICAL MODELING)

SOFTWARE PACKAGES

NUCARS

VEHICLE RELATED

TRACK RELATED

RAIL/WHEEL CONTACT

INPUT

VEHICLE DYNAMICS SOFTWARE PACKAGE ADAMS RAIL

FORCES

OUTPUT

DISPLACEMENT

VELOCITY

ACCELERATION

VEHICLE OUT PUT

VEHICLE MODEL

- •NUCARS NEW UNTRIED CAR ANALYSIS REGIEM SIMULATIONS
- •ADAMS RAIL AUTOMATIC DYNAMIC ANALYSIS OF MECHANICAL SYSTEMS

ADVANTAGES

- MODEL OF ANY RAILWAY VEHICLE CAN BE DEVELOPED.
- •ASSESMENT OF VEHICLE RIDING AND STABILITY.
- •PARAMETRIC OPTIMISATION OF SUSPENSION
- •HAZARD FREE
- •COST EFFECTIVE

LHB POWER CAR WITH AIR SPRING AND COIL SPRING BOGIES

LOAD	ED CONDITION	STRAIGHT					
SPEED	VERTICAL RI			LATERAL RI			
	Oscill Trial Results	Phoenix NUCARS	Contitech NUCARS	Oscill. Trial Results	Phoenix NUCARS	Contitech NUCARS	
80	2.455	2.17	2.28	1.993	2.42	2.31	
90	2,607	2.1	2.29	2.143	2:45	2.35	
100	2.551	2.11	2.23	2.114	2.5	2.42	
110	2.561	2.1	2.19	2.142	2.53	2.41	
120	2.608	2.15	2.2	2.174	2.53	2.43	
130	2.725	2.27	2.33	2.297	2.53	2.43	
140	2.833	2.33	2.4	2.682	2.53	2.44	

LOADED CONDITION 2-degree TRACK

SPEED	VERTICAL RI			LATERAL RI			
	Oscill. Trial Results	Phoenix NUCARS	Contitech NUCARS	Oscill Trial Results	Phoenix NUCARS	Contitech NUCARS	
80	2,519	2.17	2,32	2.005	2.36	2.34	
90	2,769	2.04	2.26	2.254	2.4	2.4	
100	2,496	2.1	2.18	2.406	2.48	2.51	
110	2.52	2.15	2.16	2,368	2.45	2.47	
120	2.588	2.29	2.26	2.47	2.59	2.68	

AIR SUSPENSION

FOR COMFORT SAFETY AND RELIABILITY WITH **ECONOMY**

ADVANTAGES OF AIR SUSPENSION

- MAINTAINS SAME HEIGHT BY LOAD SENSING.
- ADEQUATE BOGIE CLEARENCES.
- LOW VIBRATIONS AND NOISE.
- LOW SPACE REQUIREMENTS.
- ALMOST SAME NATURAL FREQUENCY UNDER EMPTY AND LOADED CONDITIONS.
- BETTER RIDING QUALITY.
- REDUCED LATERAL FORCES.
- INCRESE IN SPEED POTENTIAL.
- LOW MAINTENANCE.

BOGIE SYSTEM ON WDG2, WDP1 & WDP2 LOCOMOTIVES

BOGIE DESIGN CRITERIA

- Axle load
- Speed Potential
- Adhesion requirement
- Curve negotiability
- Bogie dynamics based on the given track parameters and wheel profile
 - L/V ratio
 - Lateral force
 - Lateral and Vertical Acceleration
 - Ride Index
 - Bogie Swing

BOGIE DESIGN CRITERIA (Contd.)

- Kinematics of bogie linkage
- Bogie Clearances
- Weight Transfer
- Axle load equalization
- Braking
- Rail bending Stiffness

BOGIE CLASSIFICATION

- Based on Suspension
 - single stage)
 - Flexi-Coil (Two stage)
 - High adhesion (Two stage)
- Based on Wheel/Axle mechanism
 - Rigid
 - Radical Power SteeringSelf Steering

Dynamics of Vehicle

Wheel set Dynamics

Bogie Dynamics

Carbody Dynamics

BOGIE FRAME

- Integral cast Bogie frame
- Fabricated
- Cast

SUSPENSION

- Single Stage
 - Steel helical coil spring
 - Rubber

- Two Stage
 - With bolster
 - Without bolster
- Hydraulic dampers
 - Primary (Vertical ,Lateral, yaw damper)
 - Secondary (Vertical & Lateral, Yaw Damper
 - Traction motor damper used in case of fully suspended traction motor

Traction Arrangement

- Primary
 - Pedestal (Horn)
 - Guidelink or Primary traction rod
- Secondary traction
 - Chaffing plate
 - Traction bar
 - Secondary traction rod

Pivot Pin Assembly

- Rigid Pivot
 - Takes vertical carbody load
- Floating Pivot
 - Used in Two-stage suspension

MOTOR SUSPENSION

- Nose suspended
 - Nose Sandwich
 - Nose link type
- Fully suspended
 - Flexible coupling required to take care of misalignment of gear and pinion
- Suspension bearing
 - Plain type
 - Roller type

WHEEL, AXLE & BEARING JOURNAL

- Wheel
 - Curved web
 - Straight web (for disc brake fitment)
- Axle
 - Solid axle
 - Hollow Axle
- Bearing
 - Cylindrical Roller
 - Taper Roller

BRAKE RIGGING

- Conventional
 - Single or double clasped
 - Cast iron brake block
 - Composite brake block
- TBU
- Disc type (for high speed operation)
- Parking brake
 - In-built in TBU
 - Separately designed by SAB WABCO

- Sanding Arrangement
 - Bogie mounted
 - Carbody mounted
- Safety Component
 - Horn stay plate
 - Lifting connection
 - Lateral & vertical stop component
 - Liners; Horn, pivot and wearing surface
 - Safety strap

HIGH ADHESION BOGIE

Basic design features

- Bogie weight 25t
- Axle load 20.5t
- Wheel base 3800 mm
- Journal centers 2300mm
- Designed speed 110km/h
- Un-sprung mass 13.05t

Basic design features

- Bogie Frame Box Section H type
- Horn guide axle guidance
- 16 nos. primary springs 40.8 kg/mm
- 08 nos. secondary springs 644 kg/mm
- Deflection primary 102mm & Sec. 17 mm
- Damper primary Vertical 750 kg/10cm/sec
- Damper secondary Lat 1150 kg/10cm/sec

Bo-Bo BOGIE

Two Axle (Bo-Bo) Bogie

- Axle Load 20 T
- Bogie weight 15.5 T
- Unsprung weight 4.3T
- Wheel base 2800 mm
- Journal centre 2300 mm
- Speed Potential 120 kmph on Rajdhani Standards track
- Two Axle bolsterless bogie with two stage suspension
- 'H' shaped bogie frame of fabricated box type construction
- High strength corten steel (IRS M41) used to reduce weight of bogie frame

Two Axle (Bo-Bo) Bogie (contd.)

- Helical coil springs used both in Primary & Secondary stages
- Floating type centre pivot arrangements for transfer of traction and braking forces between bogie and carbody
- Lateral guidance provided between bogie and carbody by flexi-coil action of secondary springs

Two Axle (Bo-Bo) Bogie (contd.)

- Conventional horn guide arrangement for transfer of traction & braking forces between axle and bogie frame
- Four vertical hydraulic dampers at primary stage, one at each axle box
- Two vertical hydraulic dampers & two lateral hydraulic dampers at secondary stage
- Axle hung nose suspended BHEL 4906 AZ Traction Motors
- Tread brake unit is provided for brake rigging

FLEXI-COIL BOGIE WDP2 Locomotive

DESIGN FEATURE

FLEXI-COIL MARK-5 BOGIE FOR WDP2 LOCOS.

* WHEEL BASE

(1800+2120) 3920 mm

* JOURNAL CENTRES

2222 mm

* BOGIE SIZE

4450 X 2970 mm

* DESIGN SPEED

180 km/h.

* BOGIE WT.(COMPLETE) :

25.2 t.

* AXLE LOAD

: 19.4 t.

* UNSPRUNG MASS

: 12.48 t. PER BOGIE

* BRAKES

CONVENTIONAL

* BOGIE FRAME

* AXLE GUIDANCE

* PRIMARY SPRINGS

* SECONDARY SPRINGS

* DEFLECTION (mm)

* DAMPER CAPACITY (Kg/10 Cm/Sec.) BOX SECTION-H SHAPE

HORN GUIDE/GUIDE LINK

12 x 57.2 Kg/mm

8 x 55 Kg/mm

PRIM: = 68,SECY: = 79

: PRIMARY VERTICAL = 600 Kg.SECONDARY VERTICAL = 750 Kg.

SECONDARY LATERAL = 900 Kg.

FLEXI-COIL Mk-5 BOGIE FOR WDP2 LOCO

- Axle Load 19.5 T.
- Speed Potential 160 Km/h on Rajdhani Standard Track.
- Three Axle Bogie with Bolster.
- Fabricated Box Type Bogie Frame.
- Two Stage Suspension with Helical Coil Springs in both the stages.
- Lateral guidance between car body & bogie provided by flexi-coil action of secondary springs.

FLEXI-COIL Mk-5 BOGIE FOR WDP2 LOCO (contd.)

- Four primary hydraulic vertical dampers, one each at end axle box.
- Four vertical hydraulic dampers & two lateral dampers at secondary stage of suspension.
- On end axles, axle guidance provided by guide links. On middle axle by conventional horn arrangement.
- Functions of guide links:
 - Provides flexible control of lateral & yaw motion of axle, reduces hunting tendency of bogie.
 - Transfer of traction & braking force between axle & bogie.

FLEXI-COIL Mk-5 BOGIE FOR WDP2 LOCO (contd.)

- Two traction bars (fitted with precompressed rubber pads) transfer traction and braking forces between bogie & bolster.
- Traction bars located at axle box level to minimise weight transfer.

- Nylatron liners on centre pivot provides yaw damping between bolster and car body.
- Axle hung nose suspended light weight BHEL 5002 AZ TM with roller suspension bearings.
- Conventional type brake rigging arrangement.

COMPARISON OF DESIGN FEATURES OF BOGIES OF WDP1, WDP2 AND WDG2

LOCOMOTIVE

SI.	Description	WDP1	WDP2	WDG2
1	Axle Load, t	20	19.5	20.5
2	Wt. Of bogie frame, t	2.2	3.4	4.5
3	Wt. Of Assembled bogie, t	15	25	25
4	Wt. Of Traction motor, t	3.6	3.69/3.19	3.75
5	Wheel Base	2800	3920 (2120+1800)	3800(1900+1900)
6	Axle Arrangement	Bo-Bo	Co-Co	Co-Co
7	Design Speed Km/h	135	160	100
8	Starting TE, t/loco	20	29.25	38
9	Bogie Frame	Fabricated	Fabricated	Fabricated
10	Unsprung mass/axle, t	4.2	4.1	4.35
11	Traction motor suspension	Axle hung nose	Axle hung nose	Axle hung nose
	arrangement	suspended	suspended	suspended
12	Suspension			THE SHAPE
	(a) Primary	Helical coil Spring	Helical Coil Spring	Helical Coil Spring
950	(b) Secondary	- do -	- do -	Rubber Sandwich
13	Damping – Primary-Vert	Hydraulic 4/Bogie	Hydraulic 4/Bogie	Hydraulic 4/Bogie
	- Secondary – Vert	Hydraulic 2/Bogie	Hydraulic 4/Bogie	Not provided
	- Lateral	Hydraulic 2/Bogie	Hydraulic 2/Bogie	Hydraulic 2/Bogie
		Hydraulic pivot liner		

COMPARISON OF DESIGN FEATURES OF BOGIES OF WDP1, WDP2 AND WDG2 LOCOMOTIVE(contd.)

1	C 18 18 34 18	WDP1	WDP2	WDG2
14.	Longitudinal guidance of wheel set	Horn guides	Guidelink	Horn guides
15.	Lateral wheel set guidance	Lateral thrust pad	Guide Link thrust pads on end axle boxes	Lateral thrust pad on end axle boxes
16.	Longitudinal guidance of loco body	Center pivot with rubber bush	Traction bar fitted with rubber pads at both ends	Center Pivot with rubber bush.
17.	Lateral guidance of loco body	Secondary flexicoil springs	Secondary flexicoil springs	Secondary rubber sand wich spring.
18.	Axle Bearings	Cylindrical Roller	Cylindrical Roller	Cylindrical Roller
19.	Gear Ratio	18:65	22:61	24:58
20.	Main Braking	Clasp Type Tread Brake Units (TBUs)	Clasp Type Convl. Brake Rigging	Clasp Type Convl. Brake Rigging

BOGIES FOR EXPORT

- TANZANIA
- ANGOLA
- MOZAMBIQUE
- SUDAN ARE.....

TANZANIA

MOZAMBIQUE

TENTATIVE BOGIE GENERAL ARRANGEMENT FOR CAPE GAUGE MOZAMBIQUE LOCO.

ANGOLA

SUDAN

DELENIO VEN OF X

